Microchannel deformations due to solvent-induced PDMS swelling.
نویسندگان
چکیده
The compatibility of polydimethylsiloxane (PDMS) channels with certain solvents is a well known problem of soft lithography techniques, in particular when it leads to the swelling of the PDMS blocks. However, little is known about the modification of microchannel geometries when they are subjected to swelling solvents. Here, we experimentally measure the deformations of the roof of PDMS microchannels due to such solvents. The dynamics of impregnation of the solvents in PDMS and its relation to volume dilation are first addressed in a model experiment, allowing the precise measurement of the diffusion coefficients of oils in PDMS. When Hexadecane, a swelling solvent, fills a microchannel 1 mm in width and 50 μm in height, we measure that the channel roof bends inwards and takes a parabolic shape with a maximum deformation of 7 μm. The amplitude of the subsidence is found to increase with the channel width, reaching 28 μm for a 2 mm wide test section. On the other hand, perfluorinated oils do not swell the PDMS and the microchannel geometry is not affected by the presence of perfluorodecalin. Finally, we observe that the trajectories of droplets flowing in this microchannel are strongly affected by the deformations: drops carried by swelling oils are pushed towards the edges of the channel while those carried by non-swelling oils remain in the channel center.
منابع مشابه
Supplementary Information for Microchannel deformations due to solvent-induced PDMS swelling
متن کامل
Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices.
This paper describes the compatibility of poly(dimethylsiloxane) (PDMS) with organic solvents; this compatibility is important in considering the potential of PDMS-based microfluidic devices in a number of applications, including that of microreactors for organic reactions. We considered three aspects of compatibility: the swelling of PDMS in a solvent, the partitioning of solutes between a sol...
متن کاملThe improved resistance of PDMS to pressure-induced deformation and chemical solvent swelling for microfluidic devices
We present a fabrication technique that increases the resistance of PDMS to deformation under pressure driven flow and chemical solvents swelling without the use of any foreign materials. This is achieved by enhancing the material properties of PDMS by coupling two previously isolated processes. First, the weight ratio of the prepolymer to the curing agent was increased from 10:1 to 5:1, with t...
متن کاملVelocity measurements of blood flow in a rectangular PDMS microchannel assessed by confocal micro-PIV system
This paper examines the ability to measure the velocity of both physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel by means of the confocal micro-PIV system. The PDMS microchannel, was fabricated by conventional soft lithography, had a microchannel near to a perfect rectangular shape (300μm wide, 45μm deep) and was optically transparent, which ...
متن کاملSwelling dynamics of a thin elastomeric sheet under uniaxial pre-stretch
It has been demonstrated experimentally that pre-stretch affects the swelling of an elastomeric membrane when it is exposed to a solvent. We study theoretically the one-dimensional swelling of a pre-stretched thin elastomeric sheet, bonded to an impermeable rigid substrate, to quantify the influence of pre-stretch. We show that the solvent uptake increases when pre-stretch increases, both at eq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 10 21 شماره
صفحات -
تاریخ انتشار 2010